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A procedure based on homotopy, involving a quick calculation
of EPR line positions for various orientations of the external
magnetic field by the method of least-squares fitting and Taylor-
series expansion, using a known line position at an infinitesimally
close orientation of the external magnetic field as the initial value,
by using the eigenvectors and eigenvalues of the spin-Hamiltonian
matrix in single crystals, has been exploited to simulate a poly-
crystalline EPR spectrum. This requires rigorous calculations of
intensities of resonant lines, along with their positions. Specifi-
cally, details are given of the numerical techniques involving
time-efficient matrix diagonalization to obtain the eigenvalues and
eigenvectors required to calculate positions and intensities of EPR
lines by the method of least-squares fitting. Finally, the procedure
of how to simulate a polycrystalline EPR spectrum is outlined, the
required steps are listed, and illustrative examples are given.
© 1999 Academic Press

at orientations ofB away from the crystal axis required to
calculate a powder spectrum. Misra and VasilopouR)gN1V
hereafter) published a technique of quickly calculating angule
variation of resonant EPR line positions in a single crystal b
calculating EPR line positions by the method of least-square
fitting (LSF) for an orientation oB infinitesimally close to the
one for which the resonant line position is known.

Since, as pointed out above, it is of great interest to simula
powder spectra, which requires a knowledge of spectral intel
sities, it is worthwhile to extend the technique of MV to
calculate the intensity of a line for an orientation of the externa
magnetic field infinitesimally close to the one for which the
eigenvectors and eigenvalues corresponding to the levels p:
ticipating in resonance are known, by the LSF technique, t

minimize the computer time required. (This method is referre
to as “homotopy,” implying continuation or embedding))(
The purpose of this paper is to provide the details of how thi
approach, referred to hereafter as homotopy matrix diagone
ization (HTMD) method, can be realized.

Details of the simulation of a powder spectrum are given ir
Section Il. Section Il deals with the LSF procedure specific tc

Simulation of polycrystalline (or powder; these two termghe required computation, along with some relevant helpfu
will hereafter be used interchangeably) spectrum of a transidmerical techniques. Section IV gives the details of the con
tion-metal ion has been of great interest recently, especiallypoter calculation of a simulated powder spectrum. Section ?
metalloproteins or other samplel.(These materials are char-includes a list of the various steps required in such a simule
acterized by rather large zero-field splitting (ZFS) paramettion, while illustrative examples are given in Section VI. Sec-
(D), for which it is often not possible to grow single crystalstion VII is devoted to a discussion of computational times
and one has no choice but to analyze a powder-sample speguired in the BFMD, HTMD, and perturbation approaches
trum to estimate ZFS parameters. The straightforward way Biscussion and concluding remarks are provided in Sectio
simulate a powder spectrum is to use perturbation expressidfl.
if the ZFS parameters are not large or to use the brute-force
technique wherein diagonalization of the spin-Hamiltonian ma-
trix (SH) is performed to compute the required energy levels
for values of the external magnetic field varied in small stepsThe EPR spectrum in a polycrystalline material can b
over a chosen range, referred to hereafter as brute-force masiimulated by overlapping spectra computed for a large numb
diagonalization (BFMD) method. This is done for selectedf uniformly distributed orientationsé( ¢) of the external
orientations of the external magnetic field bereafter) over magnetic (Zeeman) field, over the unit sphere weighted by
the unit sphere. Evidently, if the ZFS parameters are large asid 0d6de to take account of the distribution of the various
spin (S) of the transition-metal ion is also large, e §.+ 5 for  constituting crystallites whose principal axes are orientated i
the M*™ ion and S = ; for the Gd* ion, the brute-force the intervaldd, de about @, ¢). As well, a lineshape function,
technique requires exorbitant computer times. On the otHe{B,, B), for the various possible transitioms< i” is used
hand, for largeD, the perturbation approximation is not validwhich could be Gaussian, Lorentzian, or a complicated func

:
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fitting; angular variation.

I. INTRODUCTION

II. COMPUTATION OF POWDER SPECTRUM
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tion appropriate to the sample, in addition to each line positioralizations of the SH matrix by using the LSF technique of MV
being weighted in proportion to its transition probability. (Her§2]. However, their efforts were confined only to the calcula-
B, is theith resonant field value.) tion of angular variation of the resonant field positioBgj, 6,

Thus, the simulated spectrum can be expressed as ¢), in single crystals and not to the simulation of powdel
spectra requiring the intensities of the transitions, which, i
turn, depend upon the eigenvecttds,).

Tl 2 2
S(B, vc)=f f > P(i, 0, ¢, v

I IIL. LEAST-SQUARES FITTING (HTMD) PROCEDURE AS
APPLIED TO THE SIMULATION OF POWDER
X F(By, B)d(cos6)de. (2.1] SPECTRA BY VARYING THE ORIENTATION

_ . N B OF B IN INFINITESIMAL STEPS
In Eq. [2.1],P(i, 6, ¢, v.) is the transition probability for

theith transition, between the levalsandi”, participating in The simulated spectrum is computed by the use of Eq. [2.1
resonance at the microwave frequency (hereafter the teWherein the integrals are converted to discrete sums. Tt
microwave radiation refers to electromagnetic waves of frearious parameters/techniques required in the computation &
guency 1-950 GHz)y,, at the orientationd, ¢) of B over the described below.

unit sphere. It is expressed as Resonant line positions.The procedure to calculate the
resonant line position at the orientatio, ¢ 860, ¢ + 6¢),
P, 0, @, v) = (@i|(BySc+ ByS, + B,S)|®i)|? [2.2] from the knowledge of the line position at the orientation (
¢), using the least-squares fitting technique and Taylor-serie
In Eq. [2.2], S, and By, (¢« = X, Yy, 2) represent the expansion, is
components of the electron spin opera®rand the modula-
tion RF fieldB,. |®;) and|®;) are the eigenvectors of the B (i, 0 + 86, ¢ + d¢, v.)
spin-Hamiltonian matrixH, corresponding to the energy lev- e 1
elsE;, andE; participating in resonancéd|®,) = E,|®,)]. — lterative limit of | — 9°S 9S [3.1]
It is important to describe briefly the two alternative tech- aB? L \9B) |
nigues of obtaining an EPR spectrum as they have bearing on ' '

proposed simulation of a powder spectrum. In Eq. [3.1], one starts witlB! = B, (i, 6, ¢, v.), andS is

(i) Swept-field EPR. The microwave frequency is keptdefined as
fixed and the external magnetic field is swept over a chosen
range. Resonance occurs when the energy difference between S= (|E. — Ey| — hvy)?, [3.2]
eigenpairs becomes equal to the energy of the microwave
quantum. This way, all the transitions are recorded in aghereh is Planck’s constant arfl., E;. are the energies of the
appropriate magnetic-field sweep interval. This technique hasels participating in resonance.
been used most frequently because of experimental conveThe procedure of how to calculate the square bracket in Ei
nience. [3.1] numerically, using the eigenvectors and eigenvalues ¢
(i) Swept-frequency EPR.The magnetic field is kept fixed the SH matrix, is described in Appendix .
and the frequency of the microwave radiation is varied over an,ansition probabilities. To simulate a polycrystalline
appropriate interval so that all the transitions are recorded.g ectrum, one needs to calculate the transition probabilitie
can be easily seen that this case can be taken into accoun @r 6, o, v,) for the various transitions, given by Eq. [2.2], at
powder-spectrum simulation by using steps parallel to thoggyious orientations of the external magnetic field, which, ir
presented in this paper for swept-field EPR for the smp{gmy depend upon the eigenvectdes,(6, ¢)); i = i’, i”
reason that a resonance occurs when the energy Q'ﬁere%ﬁresponding to the energy levéls andE, participating in
between the eigenpairs is equal to the quantum of microwaygonance, referred to hereafter as eigenpairs. The transiti
radiation regardless of whether this condition is achieved %Yobability at the infinitesimal orientatioh + 56 ande + 8¢
vgrying the mggpetic field or by varying the frequency oft g can be obtained from the eigenvectbis(0 + 860, ¢ +
microwave radiation. 8¢)). The latter are already computed in the final iteration tc
It is clear from Eq. [2.1] that, in particular, one needs t6alculateB (i, 6 + 660, ¢ + d¢) as obtained using Eq. [3.1].
know the resonant field values for the various transitions, 24§€ procedure for a numerical calculation of intensity for the
well as their transition probabilities. The most direct way tgeneral case when the elements of the SH matrix are compl.
calculate these is to use the exorbitantly time-consumifggiven in Appendix II.
BFMD technique, as explained above in Section I. A consid- Frequency/field conversion in relation to transition proba-
erable saving of computer time can be accomplished if obdity. The transition probability depends upon the eigenvec
uses the HTMD technique to minimize the number of diagaders corresponding to the eigenpairs for resonance, which d
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pend, in turn, on both the external magnetic field and the is a sufficiently large number, say = 300 (i.e., at every
frequency of the electromagnetic radiation. In swept-field EPR, of a degree), depending upon the convergence rate
they are calculated at the resonant fiel, which, in turn, B,(i, 6;, ¢;, v, values computed using Eq. [3.1]. Similar
depends upon the microwave frequency so that the differeramnsiderations apply to changesgivalues inn, steps, sayn,

in the energies of eigenpairs is equal to a quantum of micre- 90 (i.e., every 4 degrees), over 0 ta.2Thus, one can start
wave radiation. On the other hand, in swept-frequency EPR thes = 0°, ¢ = 0°. Then increasé by =/ 2n, and compute the
role of B, is played by the fixed magnetic-field valug, while resonant field8,(i, 0;, ¢;, v.) and the corresponding transi-
the microwave frequency is made equal to the energy diffafen probabilitiesP(i, 6;, ¢;, v.) for ¢ values incrementing
ence between the eigenpairs. Finally, in the simulation offe@m ¢ = 0° in 2m/n, steps. The interval between successive
powder spectrum, a Gaussian distribution function {eBpf{ (9, ¢,) values should be chosen to be sufficiently small sucl
B.)?/og]} is used for swept-field EPR, wheng andos are the  that the resonant field values at these two orientatior® a6
resonant frequency and the corresponding Gaussian widthist differ from each other by relatively large magnitudes. The
field units, respectively, to take into account the finite width Qfarious ©;, ¢;) values required in the sum in Eq. [4.1] are thus
the energy levels for each transition, as presented in this paggken into account by the grid structure.

On the other hand, for swept-frequency EPR this distribution A quick way to take into account the weighting factor of sin
assumes the corresponding form, expl{ v,)*/o7], wherev, ¢ in Eq. [4.1], as followed here, is by varying césvalues
and o, are the resonant frequency and the Gaussian widthffam 0 to /2 in n equal steps, where is sufficiently large,
frequency units, respectively. These distribution functions thefych that co® = (i — 1)/(n — 1) withi = 1, 2, 3, ... n.

multiply the transition probability aB, or v, as given by Then theAd interval corresponding td(cos 6) interval isA0

Eq. [2.2]. = A(cos 60)/|d(cos 0)/de)|. Thus, the number of values
considered in the interval(cos 6) is proportional to 146, or
IV. CALCULATION OF A SIMULATED SPECTRUM equivalently, to sirg.

When there appear “crossing” or “looping” transitions, e.g.
in the case of the Fé ion (2), problems arise when two
tf8nsitions cross each other between two successiyepf)

: i X Ualues considered (crossing transition) or a transition does n
to enable computer simulation are described below. occur at the adjacents(, ;) values (looping transition). In

Integrals. The integral in Eq. [2.1] can be expressed as gder to overcome these problems, certain strategies must
sum over different orientations{, ¢;) of B distributed uni-  employed which are discussed in Appendix II. In addition, ar
formly over the unit sphere divided into grids whose intersegﬁproved partitioning scheme of the grid may be used. To thi
tions for successive grids are infinitesimally close to each otr}qu, Wang and Hansom,(5) developed a novel scheme,
and over the values @ divided into channelsB,, distributed 5med the SOPHE (Sydney Opera House) partitioning schen
over the magnetic-field interval under study. Thus, Eq. [2.3}yolving a combination of cubic spline and linear interpola-

In order to simulate a powder spectrugfB, v.), one needs
to perform summations in discrete steps on a computer

can be expressed, using a constant C, as tions; the unit sphere is partitioned into triangularly shape:
convexes subtending nearly the same solid angles. These pt
S(B, v) =C X P(i, 0, ¢, vo lications @, 5) also provide reference to earlier proposed par
SUIL A titioning schemes, e.g., the Igloo method for partitioning ar
X F(B/(i, 0, @}, v, Bysin 6. [4.1] octant of the unit spheres).

Eigenpairs participating in resonance.lt is clear that the
In Eq. [4.1], the values of; are distributed over the interval 0same eigenpairs which belong to the levels characterized by t
to w/2, while those ofkp; are over 0 to 2, taking into account electronic magnetic quantum numbéisandM — 1, which
the fact that the EPR spectrum remains unchanged when tlescribe the eigenvectors Hff,,, the Zeeman part of the spin
magnetic-field orientation is reversed in direction due to timétamiltonian, should be used for the calculation of the resonal
reversal invariance, and s#) takes into account the uniformfields corresponding to allowed fine-structure transitions as tr
distribution of the crystallites constituting the powder such thatientation 0, ¢) of B is changed successively to the next
the number of crystallites with their axes alofigis propor- infinitesimally close orientationd(+ 86, ¢ + 8¢) to cover the
tional to sin®;. The choice of ¢;, ¢;) grid will be described unit sphere. This is accomplished by first finding the eigenval
below. The summation ovésrtakes into account the probabil-ues and eigenvectors ¢f,. The eigenvalues are then ar-
ity of the amplitude of absorption at the magnetic-field valuganged, either in increasing or in decreasing order, characte
By due to the lineshape distributi¢f(B,(i, 6;, ¢;, v), Bi) for ized by M, the magnetic quantum number. (In the
the ith transition for the orientation oB along the §;, ¢;) computational procedure followed in this paper this is accom
direction. plished by the use of an appropriate subroutine.) It is followe
(6, ¢;) grid. One can conveniently choose &,(¢;) grid by transforming the matrix oH s, the zero-field part of the
where thef value is changed from 0 te/2 in n, steps where spin Hamiltonian by the matri¥, formed by the eigenvectors
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of H,. as columns. (Of coursé{,. is diagonal in this repre- perturbation expressions or BFMD method for the eigenvalue
sentation with the diagonal elements being the eigenvalueskgM), (8, 9 and the resonance condition
H,.). The transformed spin-Hamiltonian matik™ = V(H,
+ Hzg)V', so obtained in the basis of eigenvectord-of, is hy = [E(M) — E(M — 1)|. [5.1]
then diagonalized to find its eigenvalues and eigenvectors. This
time no ordering of eigenvalues is carried out. In this manner, (i) Using the resonance fields obtained = ¢ = 0 in
one is always certain that the eigenpairs characterizel by step (i) as initial values, the resonance field® at =/2n,, ¢
M — 1, always remain the same in the homotopy procedure. 0, are then calculated by the application of Eq. [3.1]
Without this practice, it is frequently impossible to follow theabandoning the iteration procedure when the difference of tf
same eigenpairs for a given transition as the orientatidhisf resonance field estimated in an iteration becomes less thar
changed, particularly when this orientation is not close to tisenall value, say 0.001 mT, from that estimated in the previou
principal axis of the crystal. It is noted that tihvd, M — 1, iteration. (Only¢ = 0 is needed for® = 0, since for this
eigenpairs are, indeed, unequivocally identified when pertwrientation thex andy components oB are identically zero.)
bation expressions are used with the electronic Zeeman tefime required eigenvalues and eigenvectors of the spin-Ham
being chosen to be the zero-order teBj Alternatively, since tonian matrix are computed by the use of the subroutin
the M, M-1 eigenpair is unequivocally identified when the]ACOBI, which diagonalizes real symmetric matrices and i
perturbation expressions are used, &hg is chosen as the particularly efficient when the off-diagonal elements in the SF
zero-order term, one can make a correspondence betweenntiarix are infinitesimally small as is naturally the case in
eigenvalues of the full HamiltoniarH(. + H ) as obtained homotopy. (Briefly, the diagonalization in the JACOBI algo-
by matrix diagonalization and those calculated by perturbatiaithm is accomplished by successive rotations to annihilate tr
in which case the labeM is well defined. This is done by off-diagonal elements of the’2 2 submatrix constituted by the
finding the closest perturbation eigenvalues to the eigenvallasgyest off-diagonal element and the corresponding diagon
calculated by matrix diagonalization, the two sets not beirelements of the SH matrix at any stage of successive rotatior
identically the same. For details, seel).) TheB, values obtained & = 7/2n,, ¢
Lineshape function F(@, 6;, @), B). The spectrum is = 0, are then used as initial values for calculating resonanc
then calculated by performing the sum in Eq. [4.1] wii, 6, fields até = =/2n, and ¢ = 2m/n,. Next, the resonance
¢;) centered aB(i, 6;, ¢;, v.) with the lineshape function fields are calculated using Eq. [3.1] fér = =/2n,, ¢ =
F(B.(i, 0;, ¢;, vJ)B,) extended over a reasonable magneti¢27/n,)i, fori taking successively the values 2, 3, . n,, —
field interval = AB aboutB,(i, 6;, ¢;, v.), characteristic of the 1 SO as to span theinterval over 360° in equal steps ofr2n,,,
lineshape. The most commonly used lineshapes are Gaus$igifd the set of resonant field values obtained in the precedir
and Lorentzian. In particular, the Lorentzian lineshape will bealculation as initial values. The resonance fields are the

used in the computations presented in this paper. For use in gaéculated for6 = 2(w/2n,), ¢ = 0, using those calculated
summation in Eq [41], itis expressed as for 0 = 7T/2n9, Qo = 0, as initial values. Thereafter, the

resonance fields are calculated in the same way as théat=for

7/ 2n, ande # 0 for 6 = 2(w/2n,) and fore = (2w/n,)i for

i taking on successively the values 2, 3, . n,,— 1. These

+ (By— By(i, 6, ¢, v))?]"", [4.2] calculations are repeated by increasifigzalue in steps of
7/ 2n,, and for each new value, with¢ = 0 theB, values as

whereT is the Lorentzian linewidth (half-width at half-maxi- ca@lculated for the previous value with ¢ = 0 are used as

mum, HWHM = V/3AB,/2, with AB,, being the peak-to-peak initial values to calculate ne®, values. In total, the resonance

first-derivative linewidth), and, is a constant. fields are calculated fof values in steps ofr/2n, from O to
More complicated lineshapes appropriate to polycrystallifé@2, and for eacty value appropriate values are chosen in

samples are discussed by Mis7, @nd in the references givenSteps of Zr/n, to cover the interval of 0 to 2 For the
therein. resonance fields so calculated at each orientationg() of B,

the corresponding relative intensity of the<s i” transition,
P(i, 0, ¢, v.), is also calculated by the use of Eq. [2.2]. The
numerical technique used to accomplish this is described
Appendix Il. The resonance fields for the various transition:
and the corresponding intensities for variods, (¢;) combi-
nations are then stored, to be used later for simulation c

The following steps are recommended to simulate a powq%(?Wder spectrum: (It |s_n0ted that a practlcal way to_automa'
spectrum using the proposed homotopy method ically ensure the inclusion of the weight factor of giris by
' varying cosh uniformly over the interval 1 to 0 as described in

(i) The allowed resonance fieldsAM| = 1) to be used as Section Il above).
initial values are calculated ét= ¢ = 0° using the third-order  (iii) The magnetic-field range over which the spectrum is tc

FL(Br(il GJ! ()D]l VC)! Bk) = I‘<L1—‘|:1—‘2

V. A LISTING OF THE VARIOUS STEPS REQUIRED
IN SIMULATION OF POWDER SPECTRUM
IN INFINITESIMAL STEPS BY THE USE
OF LSF (HTMD) TECHNIQUE
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be simulated is divided into equally spaced poiBsreferred [S(S + 1) — M(M + 1)] (8) of the variousM < M’

to as channelskj; e.g., into 8000 channels. Each resonancallowed” fine-structure {1’ = M — 1) transitions indepen-

field is then changed, if necessary, to assume the value of temt of the orientation of the external magnetic field with

closest channel, and the intensity of that resonance field,raspect to the axis of the various crystallites constituting th

given by Eq. [2.2], is assigned to be th&alue at that channel, powder. (HereV is the magnetic quantum number &l the

with the channel representing tRevalue. All resonance fields electron spin withS, = S, + iS, andS_. = S, — iS, the

are thus taken into account. The lineshape distribution isising and lowering operators, respectively.

thereafter, incorporated by distributing the intensity about a The spectrum observed by Lyneh al. (8) did not exhibit

channel corresponding to a resonance line according to gy hyperfine structure, and the magnetic field was swept fro

lineshape function centered at that channel over a reasonabh—9.4 T. Thus, only the fine structure will be taken into

large intervalAB, e.g., 0.5 T, on both the higher and the loweaccount here in the simulated spectrum. The following spin

field sides oBB,. (In general AB = *=AB,,, for good precision Hamiltonian was used3j:

for Lorentzian lineshape, wheraB,,, is the full-width at

half-maximum, FWHM.) Channel intensities corresponding to  H = g,,,B(S,cos6 + S,sin 6 cos¢ + S,sin 6 sin @)

all the resonance fields calculated for the variods (p;)

values are thus taken into account by extending the minimum + D[S} - S(S+ 1)/3] + E(S{ - S)). [6.1]

field of the rangeB i, 10 Bin — AB and the maximum field

of the range B, 10 B + AB. The simulated absorption In Eq. [6.1],g = 2.000 for Mrf*; wg is the Bohr magneton,

spectrumS(B, v,), is calculated in this manner. D/gue = 1.0728 T andE/gug = 10 mT are the zero-field
(iv) Usually, it is the first derivative of the absorbed microsplitting parameters8j, and the &, y, z) axes define the

wave power that is experimentally measured. The simulatedordinate system used. (In spherical coordinate systemy

first-derivative spectrum is calculated by taking the derivativ&s 6, x = r sin 6 cos¢, y = r sin 0 sin ¢.) The fourth-order

with respect tdB of S(B, v.), as given by Eq. [4.1], along with spin-operator terms in the spin Hamiltonian, having negligible

that of the lineshape. Specifically, for the Lorentzian lineshapeffect at 249.9 GHz, were not taken into account. (Thand

given Eg. [4.2], one has for the first derivative E values chosen here are slightly different from those used |
Ref. 8), as the ones chosen here provide a better fit to th
oF (B(i, 0;, ¢;, vc), BB, experimental spectrum.)

The simulated first-derivative powder EPR spectrum as e»
pressed by Eq. [5.3], using a Lorentzian lineshape with th
) HWHM (AW) value of 70 mT characterized by the lineshape
In Eq. (5.2), and hereafteB, stands foiB,(i,6;, ¢, vc). ThUS,  fnction given by Eq. [4.3], as well as that calculated usin
the simulated first-derivative absorption spectrum is expressgfl,q-order perturbation approximation at 249.9 GHz (far in-
from Eg. [4.1], as frared) (L0), is exhibited in Fig. 1. Figure 2 shows the spectrurr

simulated by the HTMD method along with the experimenta

98B, 1)/9B=C X P(i, 0, ¢), spectrum ) in the 4.4-9.0 T range. The powder spectrum a

RUIL R simulated by HTMD method at 95 GHz (W band) is given in

aF (w;, B, 6,, @), BY/9B,sing, [5.3] Fig. 3, which also includes for comparison the spectrum sim
ulated using third-order perturbation expressions. From Figs.

=N 2 (®;[ByS, + ByS, + B,S|P;)|? and 3, it is clear that simulation with the HTMD method is
Lk significantly different from that accomplished by the use of

X (B, — By)[['2+ (B,— B;)?] % [5.4] perturbation approximation, especially at 95 GHz where th
perturbation approximation is much less valid compared to th:

In Eq. [5.4], the constant, N, may be appropriately chosedt 249.9 GHz because of lare
e.g., the calculated value with the largest magnitude ofythe

= —2KI'['*+ (B, — B;)?] "B« — By). [5.2]

value of all the channels was here set equal to 1. VII. COMPUTATIONAL TIME: BRUTE-FORCE MATRIX
DIAGONALIZATION VERSUS HOMOTOPY
VL. ILLUSTRATIVE EXAMPLE MATRIX DIAGONALIZATION

The proposed homotopy technique will now be illustrated by It is profitable to examine the computer-time economie:
application to the case of Mm{picoline),l, powder sample, achieved when powder spectra are simulated using the homr
characterized by a rather large value of the zero-field splittingpy technique. In a BFMD procedure, the SH matrix is di-
parameterD, as measured by Lyncét al. (8) at 249.9 GHz agonalized at each orientation 8f at small intervals, e.g.,
(far infrared), who simulated the spectrum using third-ordevery 5 mT, over the magnetic-field range and eigenpairs a
perturbation expressions for the ener@ 9 and the same found by comparing the energy differences between the var
zero-order relative intensityl{M, m|S, + S_|[M’, m)|’) = ous energy levels to be closest to the energy of a quantum
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FIG. 1. Powder spectra for Mii in Mn(y-picoline)l, at 249.9 GHz (far infrared) witly = 2.000,D/gus = 1.0728T, E/gus = 10 mT with the
spin-Hamiltonian described by Eqg. [6.1] as simulated both by the use of the HTMD method and by third-order perturbation expressions.

microwave radiation. The process must be further refined oVt T, if diagonalizations were performed in 5-mT steps thel
smaller magnetic-field intervals for the various transitions 000 diagonalizations of the SH matrix are required. Thit
determine the initial resonance fields, Thus, for the example might also involve another factor of 50 for the five allowed
considered in this paper covering tBefield interval from 4 to transitions if smaller steps are also included, since each tra
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FIG. 2. Powder spectrum for M7 in Mn(y-picoline)l, at 249.9 GHz (far infrared) witly = 2.000,D/gus = 1.0728 T,E/gus = 10 mT with the
spin-Hamiltonian described by Eq. [6.1] as simulated by the use of the HTMD method, plotted along with the one experimentally measured in therdnge
T. (The magnetic field could not exceed 9.4 T experimentally.) It is noted that the experimental peaks that do not correspond to those in the sictulated <
belong to another unknown impurity that is present rather than to thé Mn (8).
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FIG. 3. Same details as in the legend to Fig. 1, except that the frequency is 95 GHz (W band). (There is no experimental spectrum available for compa

sition requires 10 diagonalizations. Consequently @ire in simulating a polycrystalline spectrum quantitatively. In this
diagonalizations are required for each orientationBofto case, a qualitative spectrum can be simulated quickly sinc
estimate the initial values @, to be refined further by the useperturbation expressions do not require time-consuming matr
of Eq. [3.1] in the BFMD approach than those required in th@¢iagonalization, and the calculation of a resonant field usin
HTMD technique, since in the latter the initi8, values the resonance condition, Eq. [5.1], and eigenvalues can |
require no computation as they have already been calculateddily accomplished by Newton—Raphson method as d
for the previous infinitesimally close orientation Bf Conse- scribed in Numerical Reciped ). Using this approach the
quently, it is estimated that the BFMD method requires fivabove example requires gnli7 s of computational time to
orders of magnitude more diagonalizations, or a corresporgimulate the spectrum on the IBM RS/6000 computer at Col
ingly longer computational time than that required in thaell University Theory Center.
HTMD method. No attempt has here been made to carry out a
BFMD simulation because of the exorbitant estimated compu- VIII. DISCUSSION AND CONCLUDING REMARKS
tational time involved. In the example presented in this paper
(Fig. 1) ittodk 4 h 9 min1.77 s on the powerful IBM RS/6000 The procedure of simulating a powder spectrum as outline
Unix computer at the Cornell University Theory Center tin this article using the technique of homotopy and numerice
simulate the spectrum by the HTMD method when a gridliagonalization of the spin-Hamiltonian matrix is rigorous,
which consisted of 300 values and 9Qp values for eactd since eigenvalues and eigenvectors of the SH matrix are us
value, was used. (It should be mentioned that the SH matrixrether than perturbation expressions. This is particularly usef
be diagonalized using the JACOBI subroutine was o#<122 when the zero-field splitting paramet&, is relatively large,
dimension, since this subroutine diagonalizes only a real ma-which case for smaller microwave frequencies, e.g., 95-GH
trix. The imaginary part is thus handled using the proceduf®/ band) perturbation approximation is not justified in the
described in 10), requiring diagonalization of a matrix of example considered her&/hyv ~ 0.1 at 249.9 GHz, while
twice the dimension of that of the SH matrix.) D/hv ~ 0.25 at 95GHz. The proposed HTMD procedure,
It is noted that the matrix-diagonalization procedure is casing JACOBI diagonalization algorithm, is particularly effi-
pable of handling any SH matrix, even if the off-diagonal termsient in computer time required when the off-diagonal terms o
are sufficiently large to invalidate the use of perturbatioBH matrix at successive orientationsBfare naturally infini-
technique. As well, it is applicable to any values of the electrdasimally small in homotopy. The simplé,( ¢;) grid over the
and nuclear spins. Further, although it is desirable to use tingit sphere as suggested here may be replaced by more e
HTMD technique to simulate a polycrystalline spectrum rigeient partitioning techniques, e.g., the SOPHE grid describe
orously, it should not be forgotten that the perturbation apy Wang and Hansord(5) or the Igloo method@).
proach is useful when it is valid and when one is not interestedThe procedure illustrated in this paper can be easily e»
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tended to simulate powder spectra for electron nuclear douklbere

resonance, solid-state nuclear magnetic resonance, nuclear

guadrupole resonance, and electron spin echo envelope mod- (E, — E;»)

ulation, as well as to include hyperfine structure, if there is any. signE; — Ep) = E —E[
Finally, it is noted that the |, ¢;) grid as chosen here is ' '

quite appropriate for the Mn ion, since there are no “loop- o )
ing,” or “lobe,” transitions ). However, when these exist, e.g.,'” Eq. [I.1], the derivative of an eigenvall&. or E.. can be

in the case of the Pé ion, certain strategies are required, anavaluated by the use of Feyman's theorer)(e.g.,
a relevant discussion is provided here in Appendix Il. In
addition, a superior partitioning schemé—6 may be ex- dE; _< ‘ﬂ‘ O >
ploited to advantage, among other things, to this end. B "olaBl T

It is worthwhile to emphasize that if one can calculate the .
EPR line positions’ angular variation for an external magnetic = 1a(P]g:£086S, + gusin 6 cos S,
field orientations over the unit sphere by homotopy for a single + gyysin 0 sin @S| P;), [1.2]
crystal, as, for example, ir2), then the simulation of powder
spectrum is readily accomplished by following the proceduigqre 15 is the Bohr magnetong..(« = x, y, ) are the
described in this paper. Thus, itis clear that the cases involviggmponents of thg tensor. (It has been assumed that ghe
looping or lobe transitions and allowed hyperfine transitiongnsor is diagonal in the coordinate axes chosen here.)

(Am = 0, m being the nuclear magnetic quantum number) C&{xiting Eq. [I.2], the fact that only the Zeeman term,
clearly be handled by this technique, since single-crystal an-

gular variation of resonant line positions for these cases were

already considered i2). The extension of this technique to Hz = peS-9-B, [1-3]
the cases involving both forbidden findl = +2, +3, i _

+4,...) and forbidden hyperfineAm = +1, *2, depends on the external field has been taken into account, a
+3,...), as well as superhyperfine, transitions can also Be = B €0s0, B, = B sin6 cose, B, = B sin§ sin ¢. From

made by first calculating the EPR line positions’ angular varFd- [1-2]; one obtains, ignoring the second derivatives becau
ation for a single crystal. Consequently, no examples of the%fethe infinitesimally close orientation @& from the previous

cases are given in this paper, since its objective is to outline {fientation,
methodology and not to provide an encyclopedic collection of
examples. 9°S (aEi, aEi”) 2

The simulation procedure presented here, among others, is aB? “\aB 4B
eminently amenable to be exploited for estimation of spin-
Hamiltonian parameters from a powder spectrum by the Ieaq';ﬁus, to be used in Eq. [3.1],
squares fitting procedure and numerical diagonalization of the
spin-Hamiltonian matrix similar to that proposed ifhl) in b 1

L d°S dS

context with single-crystal EPR spectra, even though the pow-_<2) () = —(|E; — Ey| — hwy)
der spectrum possesses further complications over and above 9B B
those of a single-crystal EPR spectrum. This LSF technique _ IE,  0E,
will, thus, be of immense help to this end, especially in those sign(E;: — Ei")/<a|3 - aB) . [1.5]
cases where single-crystal samples cannot be prepared, e.g.,
transition-metal ions doped metalloproteins. Efforts are cur-
rently in progress by the author to accomplish this.

[1.4]

APPENDIX II

Calculation of Intensities of Lines

APPENDIX I The intensityP(i, 6, ¢), of a transition,i, between the
energy leveld’ andi” is given by Eq. [2.2]. Each element of
Evaluation of the Right-hand Side of Eq. [3.1] an eigenvector can be expressed in terms of its real (Re) a

imaginary (Im) parts:
From the definition ofS, as given by Eq. [3.2], one obtains

aS aEi, aEi,, - ‘@y)k: qu)i’>k+ Im‘q)i'>k. [”1]
B 2(|E — Ep| — hvy) 9B 9B signE;, — Ep»),

A term on the right-hand side of Eq. [2.2] can be expressed, fc
[I.L1] example, as
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(@/|B1S{Pi)|* = BI{R&D;|S| D)} ?
+{Im{®; S D)} ?]
= BI{ReTIS,(|®;) ® () ]}?
+{Im T S(|Di) @ (i) 1}2.
[11.2]

In Eq. [I1.2], Tr is the trace of a matrix anfib,) ® (|
represents the outer product of the two eigenvedtbrs and
|® ) with the matrix elements

(|q>i”> ® <q)i’|)jk = |‘Di">j|(bi'>f<- [1.3]

Further, taking into account the fact tt&tis a real symmetric

91
and

Re(S)y = 0. [11.8]

One then obtains

Re T{S/(|®:) ® (P;|)]
_2 Im(sy)j,j+1|m(|q)i”> ® <q)i’|)j+l,j [11.9]
i

Im T S,(| ) ® (P;])]
= E IM(S)); ;- 1Re(|Pi) @ (P |)jiry. [11.20]

matrix such that the only nonzero elements in the represenf@£qs. [11.9] and [I1.10] the required imaginary and real parts

tion in which the matrix forS, is diagonal (so that possible
values forj are over the magnetic quantum numipér= S

S—-1,...,—(S—-1), -9 are
Re(S) 1= RESYj1;, and IM(S); =0, [II.4]
and that
Re(|q)i”> ® <(I)i’|)jk = qu)i”>deq)i’>k
+1Im[ @) Im[ D),
Im(|®;) ® <‘Di'|)jk = _qu)i”>j|m|q)i’>k
+ Im|<1)i~)deCDir>k. [11.5]
One obtains

Re T{S(|®;) ® (Pi])] = E (S),j+1
X ARE| D) ® (P ])j21 + Re(|Dir) & (Di]); 11}
[11.6]
Im T S(|®y) @ (Py])] = E (S)j,j+1
i

XM @) @ (Pijie + IM(DPi) @ (D) o}

[11.7]
In Egs. [11.6] and [II.7] thej sum is over theM values—S,
—(S—1),..., S — 1). Thus, the right-hand side of Eq.

[11.2] can be calculated by the use of Egs. [Il.6] and [II.7]
Similarly, for theB,S, andB,S, terms on the right-hand side
of EqQ. [2.2], one has an equation similar to Eq. [Il.2] wih
replaced byS, andS,, respectively.

To evaluate the corresponding expressiof§,irone notes that
S, contains only imaginary elements with the nonzero elemen

IM(S);j 1= —IM(S)j+1,

of the outer products on the right-hand sides are gives by E
[11.5]. As for the corresponding expression$) one notes that
S, has only diagonal elements nonzero, which are real, thus

Im(sz)jk =0

Re(S)jk = (S)kbjx: [1.11]

whered is the Kronecke symbol, such thad; = 0 fori #
j, 6; = 1 fori = j. Finally,

Re T{S,(|®y) ® (Pi|)] = E (Sz)j,j{Rd(Di”>deq)i’>j
j

+ Im| D) Im| Py [11.12]
Im Tr{S,(|®) ® (Pi)] = E (Sz)j,j{_Rd(Di”>jlm|q)i’>j
i

+1m|®;.)Re D)}, [11.13]

When the orientation of th8, field responsible for inducing
transitions is parallel to any one of thxey, z directions, one
can use the appropriate expression similar to Eq. [I.2] t
calculate the relative intensity of thé< i” transition. For an
arbitrary orientation of thé, field, one can sum the real and
imaginary parts of the three terms together. The require
square of the absolute value in Eq. [2.2] is then obtained as

|<q)i’|leSx + B1ySy + Blez|(I)i”>|2
=BI| > a,ReS.(Py) ® (D;[)}?

a=xy.z

+1 2 aJm{S,(P) ® ()}

a=xyz

[11.14]
ts

In Eq.
cos 6.

[I1.14], a, = sin 6 cos ¢, a, = sin 6 sin ¢, anda, =
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APPENDIX III ESR of iron proteins, see T. D. Smith and J. R. Pilbrow, in “Biolog-
ical Magnetic Resonance” (L. J. Berliner and J. Reuben, Eds.),
Plenum, New York, Vol. 2, pp. 85-153 (1980); for X- and Q-band
EPR study of Cu®", VO?*, and Gd®" ions in bovine a-lactalbumin
To this end, a knowledge of angular variation Bf in a complexes, see G. Musci, G. H. Reed, and L. Berliner, J. Inorg.

single crystal as outlined ir2) is helpful. The details for the f;%ccf;efonf fg;)ég? Srgfg)risd-;- ‘%%a;éeﬁ'e;:;‘t’;npsar::;a%r;e;':e:eéz‘
two cases are as follows. zymes” (R. Lontie, Ed.), CRC Press, Boca Raton, FL, Vol. 1, p. 6

(i) Crossing transitions. When resonant fields for two  (1984); H. Beinert, Electron paramagnetic resonance in biochem-
transitions cross each other in such a way that the crossingistry: Past, present and future, Biochem. Soc. Trans. 13, 542 (1985);
takes place at one of théj( ‘Pi) values chosen for computation G. Palmer, The electron paramagnetic resonance of metallopro-

of the resonant field (case of degeneracy), only one initial value E:gfov[ilohc/l’:;moifgt eITr::"fn 1:’,’5' :;?o(;gsssi)r‘] GRGZO'::::gn (i,rll_dCJ.' S:
becomes available for computation of the two resonant field symons, Ed.), Royal Chem. Soc., London, Vol. 10B, p. 93 (1987);
values at the next valué(.,, ¢;.;). This can be remedied by  W. E. Blumberg and J. Peisach, Paramagnetic resonance studies of
reducing the interval betweem;( ¢;) and ;-1, ¢;-1), So that copper proteins, Life Chem. Rep. 5, 5 (1987); G. R. Hanson and
degeneracy atf, ) does not accur. Altematively,one may . e, Meierminke, oo S0 I8, 29
u,se the 'p.erturbatlon exprgssmns, or brute-force method, by gation’s of bimetalloenzymes, Adv. Bio—lno;’g. Chem. 4, 289 (1990).
diagonalizing the SH matrix foB values over an extended

. . . 2. S. K. Misra and V. Vasilopoulos, J. Phys. C: Condens. Matter 13,
range at small intervals to find the resonant field values at ;g4 (1983) P v

(Ojtl’ (Pj”)'_ N N 3. M. Oettli, “The Homotopy Method Applied to Eigenvalue Prob-
(if) Looping transitions. There are some transitions which  |ems,” Technical Report 205, Department Informatik, ETH, Zurich,

do not continue over all§, ¢;) values. Thus, they constitute  Dec. 1993; T. Y. Li and R. H. Rhee, Homotopy algorithm for sym-
closed curves in theﬂ(, <Pj) space on the unit sphere. Equiv- metric eigenvalue problems, Number Methods 55 (1989); K. E.

; : Gates, M. Griffin, G. R. Hanson, and K. Burrage, paper presented at
alently, there exist two resonant field values for the same the Rocky Mountain Gonference, EPR Symposium, Denver, CO. p.

transmons. for some 6" ‘PJ') vglges, while t_here exists no 265, August 3-7 (1997). (The author is grateful to Drs. Gates and
resonant field value for a transition for certai),(¢;) values. Hanson for pointing out this term.)

The existence of these looping transitions can be checked By p wang and G. R. Hanson, Appl. Magn. Reson. 11, 401 (1996).
calculating resonant field values for a certain orientatién ( ; Wang and G. R. Hanson, J. Magn. Reson. A 117, 1 (1995).
¢o) for which they exist. The resonant field values so obtaineg @ M. J. Niges, Ph.D. Thesis, University of llinois, Urbana, IL
can then be used to calculate their angular variation by de- (19795; (kl)) R. L. I’3elfo.rd'and M. J Nilges, “Computer éimulatior’1 of

creasing and increasing( ¢;) in small steps form o, ¢,) Powder Spectra,” EPR Symposium, 21st Rocky Mountain Confer-
until the two converge to the same value, beyond which their ence, Denver, CO (1979); (c) A. M. Maurice, Ph.D. Thesis, Univ. of

calculated values by the use of Eq. [3.1] become negafiwe (  llinois, Urbana, IL (1980).
7. S. K. Misra, Appl. Magn. Reson. 10, 193 (1996).
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matrix using the real and imaginary parts of the SH matrix,
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Reson. Rev. 10, 285 (1986)]. [The eigenvalues of the 2n X 2n matrix
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dination Chemistry” (G. Wilkinson, R. D. Gillard, and J. A. McCle- imaginary parts of the corresponding eigenvalue of the matrix

verty, Eds.), Pergamon, Oxford, Vol. 4, pp. 1-122 (1987). For EPR A + iB, such that (A + /B)(u + iv) = Au + jv) leads to
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