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A procedure based on homotopy, involving a quick calculation at orientations ofB away from the crystal axis required
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f EPR line positions for various orientations of the external
agnetic field by the method of least-squares fitting and Taylor-

eries expansion, using a known line position at an infinitesimally
lose orientation of the external magnetic field as the initial value,
y using the eigenvectors and eigenvalues of the spin-Hamiltonian
atrix in single crystals, has been exploited to simulate a poly-

rystalline EPR spectrum. This requires rigorous calculations of
ntensities of resonant lines, along with their positions. Specifi-
ally, details are given of the numerical techniques involving
ime-efficient matrix diagonalization to obtain the eigenvalues and
igenvectors required to calculate positions and intensities of EPR
ines by the method of least-squares fitting. Finally, the procedure
f how to simulate a polycrystalline EPR spectrum is outlined, the
equired steps are listed, and illustrative examples are given.
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I. INTRODUCTION

Simulation of polycrystalline (or powder; these two ter
ill hereafter be used interchangeably) spectrum of a tr

ion-metal ion has been of great interest recently, especia
etalloproteins or other samples (1). These materials are cha
cterized by rather large zero-field splitting (ZFS) param
D), for which it is often not possible to grow single crysta
nd one has no choice but to analyze a powder-sample

rum to estimate ZFS parameters. The straightforward wa
imulate a powder spectrum is to use perturbation expres
f the ZFS parameters are not large or to use the brute-
echnique wherein diagonalization of the spin-Hamiltonian
rix (SH) is performed to compute the required energy le
or values of the external magnetic field varied in small s
ver a chosen range, referred to hereafter as brute-force m
iagonalization (BFMD) method. This is done for selec
rientations of the external magnetic field (B hereafter) ove

he unit sphere. Evidently, if the ZFS parameters are large
pin (S) of the transition-metal ion is also large, e.g.,S 5 5

2 for
he Mn21 ion and S 5 7

2 for the Gd31 ion, the brute-forc
echnique requires exorbitant computer times. On the o
and, for largeD, the perturbation approximation is not va
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alculate a powder spectrum. Misra and Vasilopoulos (2) (MV
ereafter) published a technique of quickly calculating ang
ariation of resonant EPR line positions in a single crysta
alculating EPR line positions by the method of least-squ
tting (LSF) for an orientation ofB infinitesimally close to th
ne for which the resonant line position is known.
Since, as pointed out above, it is of great interest to sim

owder spectra, which requires a knowledge of spectral in
ities, it is worthwhile to extend the technique of MV
alculate the intensity of a line for an orientation of the exte
agnetic field infinitesimally close to the one for which
igenvectors and eigenvalues corresponding to the level

icipating in resonance are known, by the LSF techniqu
inimize the computer time required. (This method is refe

o as “homotopy,” implying continuation or embedding (3)).
he purpose of this paper is to provide the details of how
pproach, referred to hereafter as homotopy matrix diag

zation (HTMD) method, can be realized.
Details of the simulation of a powder spectrum are give

ection II. Section III deals with the LSF procedure specifi
he required computation, along with some relevant he
umerical techniques. Section IV gives the details of the c
uter calculation of a simulated powder spectrum. Sectio

ncludes a list of the various steps required in such a sim
ion, while illustrative examples are given in Section VI. S
ion VII is devoted to a discussion of computational tim
equired in the BFMD, HTMD, and perturbation approach
iscussion and concluding remarks are provided in Se
III.

II. COMPUTATION OF POWDER SPECTRUM

The EPR spectrum in a polycrystalline material can
imulated by overlapping spectra computed for a large nu
f uniformly distributed orientations (u, w) of the externa
agnetic (Zeeman) field,B, over the unit sphere weighted

in ududw to take account of the distribution of the vario
onstituting crystallites whose principal axes are orientate
he intervaldu, dw about (u, w). As well, a lineshape functio
(Bri , B), for the various possible transitionsi 9 7 i 0 is used
hich could be Gaussian, Lorentzian, or a complicated f
1090-7807/99 $30.00
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84 SUSHIL K. MISRA
eing weighted in proportion to its transition probability. (H
ri is the ith resonant field value.)
Thus, the simulated spectrum can be expressed as

S~B, nc! 5 E
u50

p/ 2 E
w50

2p O
i

P~i , u, w, nc!

3 F~Bri, B!d~cosu !dw. [2.1]

In Eq. [2.1], P(i , u, w, n c) is the transition probability fo
he i th transition, between the levelsi 9 and i 0, participating in
esonance at the microwave frequency (hereafter the
icrowave radiation refers to electromagnetic waves of
uency 1–950 GHz),nc, at the orientation (u, w) of B over the
nit sphere. It is expressed as

P~i, u, w, nc! } u^F i 9u~B1xSx 1 B1ySy 1 B1zSz!uF i 0&u 2. @2.2#

In Eq. [2.2], Sa and B1a (a 5 x, y, z) represent th
omponents of the electron spin operator,S, and the modula
ion RF field B1. uF i 9& and uF i 0& are the eigenvectors of t
pin-Hamiltonian matrix,H, corresponding to the energy le
ls Ei 9, andEi 0 participating in resonance [HuF k& 5 EkuF k&].
It is important to describe briefly the two alternative te

iques of obtaining an EPR spectrum as they have bearin
roposed simulation of a powder spectrum.

(i) Swept-field EPR. The microwave frequency is ke
xed and the external magnetic field is swept over a ch
ange. Resonance occurs when the energy difference be
igenpairs becomes equal to the energy of the micro
uantum. This way, all the transitions are recorded in
ppropriate magnetic-field sweep interval. This technique
een used most frequently because of experimental c
ience.
(ii) Swept-frequency EPR.The magnetic field is kept fixe

nd the frequency of the microwave radiation is varied ove
ppropriate interval so that all the transitions are recorde
an be easily seen that this case can be taken into accou
owder-spectrum simulation by using steps parallel to t
resented in this paper for swept-field EPR for the sim
eason that a resonance occurs when the energy diffe
etween the eigenpairs is equal to the quantum of micro
adiation regardless of whether this condition is achieve
arying the magnetic field or by varying the frequency
icrowave radiation.

It is clear from Eq. [2.1] that, in particular, one needs
now the resonant field values for the various transition
ell as their transition probabilities. The most direct way
alculate these is to use the exorbitantly time-consum
FMD technique, as explained above in Section I. A con
rable saving of computer time can be accomplished if
ses the HTMD technique to minimize the number of dia
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2]. However, their efforts were confined only to the calcu
ion of angular variation of the resonant field positions,Br(i , u,
), in single crystals and not to the simulation of pow
pectra requiring the intensities of the transitions, which
urn, depend upon the eigenvectorsuF k&.

III. LEAST-SQUARES FITTING (HTMD) PROCEDURE AS
APPLIED TO THE SIMULATION OF POWDER
SPECTRA BY VARYING THE ORIENTATION

OF B IN INFINITESIMAL STEPS

The simulated spectrum is computed by the use of Eq. [
herein the integrals are converted to discrete sums.
arious parameters/techniques required in the computatio
escribed below.

Resonant line positions.The procedure to calculate t
esonant line position at the orientation, (u 1 du, w 1 dw),
rom the knowledge of the line position at the orientationu,
), using the least-squares fitting technique and Taylor-s
xpansion, is

Br~i , u 1 du, w 1 dw, nc!

5 Iterative limit of F2S ­ 2S

­B2D
B9r

21S ­S

­BD
B9r

G . [3.1]

n Eq. [3.1], one starts withB9r 5 Br (i , u, w, n c), andS is
efined as

S; ~uEi 9 2 Ei 0u 2 hnc!
2, [3.2]

hereh is Planck’s constant andEi 9, Ei 0 are the energies of th
evels participating in resonance.

The procedure of how to calculate the square bracket in
3.1] numerically, using the eigenvectors and eigenvalue
he SH matrix, is described in Appendix I.

Transition probabilities. To simulate a polycrystallin
pectrum, one needs to calculate the transition probab
(i , u, w, n c) for the various transitions, given by Eq. [2.2],
arious orientations of the external magnetic field, which
urn, depend upon the eigenvectorsuF i(u, w)&; i 5 i 9, i 0
orresponding to the energy levelsEi 9 andEi 0 participating in
esonance, referred to hereafter as eigenpairs. The tran
robability at the infinitesimal orientationu 1 du andw 1 dw
f B can be obtained from the eigenvectorsuF i(u 1 du, w 1
w)&. The latter are already computed in the final iteratio
alculateBr(i , u 1 du, w 1 dw) as obtained using Eq. [3.1
he procedure for a numerical calculation of intensity for
eneral case when the elements of the SH matrix are com

s given in Appendix II.

Frequency/field conversion in relation to transition pro
ility. The transition probability depends upon the eigen

ors corresponding to the eigenpairs for resonance, whic
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requency of the electromagnetic radiation. In swept-field E
hey are calculated at the resonant field,Br, which, in turn,
epends upon the microwave frequency so that the differ

n the energies of eigenpairs is equal to a quantum of m
ave radiation. On the other hand, in swept-frequency EP

ole ofBr is played by the fixed magnetic-field value,B0, while
he microwave frequency is made equal to the energy d
nce between the eigenpairs. Finally, in the simulation
owder spectrum, a Gaussian distribution function {exp[(B 2

r)
2/sB

2]} is used for swept-field EPR, wherenB andsB are the
esonant frequency and the corresponding Gaussian wid
eld units, respectively, to take into account the finite widt
he energy levels for each transition, as presented in this p
n the other hand, for swept-frequency EPR this distribu
ssumes the corresponding form, exp[(n 2 nr)

2/sn
2], wherenr

nd sn are the resonant frequency and the Gaussian wid
requency units, respectively. These distribution functions
ultiply the transition probability atBr or nr as given by
q. [2.2].

IV. CALCULATION OF A SIMULATED SPECTRUM

In order to simulate a powder spectrum,S(B, n c), one need
o perform summations in discrete steps on a comput
alculate the integrals in Eq. [2.1]. The required specializa
o enable computer simulation are described below.

Integrals. The integral in Eq. [2.1] can be expressed a
um over different orientations (u j , w j) of B distributed uni
ormly over the unit sphere divided into grids whose inter
ions for successive grids are infinitesimally close to each o
nd over the values ofB divided into channels,Bk, distributed
ver the magnetic-field interval under study. Thus, Eq. [
an be expressed, using a constant C, as

S~B, nc! 5 C O
i ,u j,w j,k

P~i , u j, w j, nc!

3 F~Br~i , u j, w j, nc!, Bk!sin u j. [4.1]

n Eq. [4.1], the values ofu j are distributed over the interva
o p/2, while those ofw j are over 0 to 2p, taking into accoun
he fact that the EPR spectrum remains unchanged whe
agnetic-field orientation is reversed in direction due to ti

eversal invariance, and sinu j takes into account the unifor
istribution of the crystallites constituting the powder such

he number of crystallites with their axes alongu j is propor-
ional to sinu j . The choice of (u j , w j) grid will be described
elow. The summation overk takes into account the probab

ty of the amplitude of absorption at the magnetic-field va
k due to the lineshape distributionF(Br(i , u j , w j , n c), Bk) for

he i th transition for the orientation ofB along the (u j , w j)
irection.

(u j, w j) grid. One can conveniently choose a (u j , w j) grid
here theu value is changed from 0 top/2 in nu steps wher
,

ce
o-
he

r-
a

in
f
er.
n

in
n

to
s

a

-
er

]

the
-

t

e

3
0 of a degree), depending upon the convergence ra

r(i , u j , w j , n c) values computed using Eq. [3.1]. Simi
onsiderations apply to changes inw values innw steps, saynw

90 (i.e., every 4 degrees), over 0 to 2p. Thus, one can sta
t u 5 0°, w 5 0°. Then increaseu by p/ 2nu and compute th
esonant fieldsBr(i , u j , w j , n c) and the corresponding tran
ion probabilitiesP(i , u j , w j , n c) for w values incrementin
rom w 5 0° in 2p/nw steps. The interval between succes
u j , w j) values should be chosen to be sufficiently small s
hat the resonant field values at these two orientations ofB do
ot differ from each other by relatively large magnitudes.
arious (u j , w j) values required in the sum in Eq. [4.1] are t
aken into account by the grid structure.

A quick way to take into account the weighting factor of
j in Eq. [4.1], as followed here, is by varying cosu values

rom 0 to p/2 in n equal steps, wheren is sufficiently large
uch that cosu 5 (i 2 1)/(n 2 1) with i 5 1, 2, 3, . . . ,n.
hen theDu interval corresponding toD(cosu) interval isDu

D(cos u )/ud(cos u )/du )u. Thus, the number ofu values
onsidered in the intervalD(cosu) is proportional to 1/Du, or
quivalently, to sinu.
When there appear “crossing” or “looping” transitions, e

n the case of the Fe31 ion (2), problems arise when tw
ransitions cross each other between two successive (u j , w j)
alues considered (crossing transition) or a transition doe
ccur at the adjacent (u j , w j) values (looping transition). I
rder to overcome these problems, certain strategies mu
mployed which are discussed in Appendix II. In addition

mproved partitioning scheme of the grid may be used. To
nd, Wang and Hanson (4, 5) developed a novel schem
amed the SOPHE (Sydney Opera House) partitioning sch

nvolving a combination of cubic spline and linear interpo
ions; the unit sphere is partitioned into triangularly sha
onvexes subtending nearly the same solid angles. These
ications (4, 5) also provide reference to earlier proposed
itioning schemes, e.g., the Igloo method for partitioning
ctant of the unit sphere (6).

Eigenpairs participating in resonance.It is clear that the
ame eigenpairs which belong to the levels characterized b
lectronic magnetic quantum numbersM andM 2 1, which
escribe the eigenvectors ofHZe, the Zeeman part of the sp
amiltonian, should be used for the calculation of the reso
elds corresponding to allowed fine-structure transitions a
rientation (u, w) of B is changed successively to the n

nfinitesimally close orientation (u 1 du, w 1 dw) to cover the
nit sphere. This is accomplished by first finding the eigen
es and eigenvectors ofHZe. The eigenvalues are then
anged, either in increasing or in decreasing order, chara
zed by M , the magnetic quantum number. (In t
omputational procedure followed in this paper this is acc
lished by the use of an appropriate subroutine.) It is follo
y transforming the matrix ofHZFS, the zero-field part of th
pin Hamiltonian by the matrixV, formed by the eigenvecto
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entation with the diagonal elements being the eigenvalu
Ze). The transformed spin-Hamiltonian matrixHT 5 V(HZe

HZFS)V
†, so obtained in the basis of eigenvectors ofHZe, is

hen diagonalized to find its eigenvalues and eigenvectors
ime no ordering of eigenvalues is carried out. In this man
ne is always certain that the eigenpairs characterized bM,

2 1, always remain the same in the homotopy proced
ithout this practice, it is frequently impossible to follow t

ame eigenpairs for a given transition as the orientation oB is
hanged, particularly when this orientation is not close to
rincipal axis of the crystal. It is noted that theM, M 2 1,
igenpairs are, indeed, unequivocally identified when pe
ation expressions are used with the electronic Zeeman
eing chosen to be the zero-order term (8). Alternatively, since

he M, M-1 eigenpair is unequivocally identified when
erturbation expressions are used, andHZe is chosen as th
ero-order term, one can make a correspondence betwe
igenvalues of the full Hamiltonian (HZe 1 HZFS) as obtaine
y matrix diagonalization and those calculated by perturba

n which case the labelM is well defined. This is done b
nding the closest perturbation eigenvalues to the eigenv
alculated by matrix diagonalization, the two sets not b
dentically the same.

Lineshape function F(Br(i, u j, w j), Bk). The spectrum i
hen calculated by performing the sum in Eq. [4.1] withP(i , u j ,

j) centered atBr(i , u j , w j , n c) with the lineshape functio
(Br(i , u j , w j , n c)Bk) extended over a reasonable magne
eld interval6DB aboutBr(i , u j , w j , n c), characteristic of th

ineshape. The most commonly used lineshapes are Gau
nd Lorentzian. In particular, the Lorentzian lineshape wi
sed in the computations presented in this paper. For use
ummation in Eq. [4.1], it is expressed as

FL~Br~i , u j, w j, nc!, Bk! 5 KLG@G 2

1 ~Bk 2 Br~i , u j, w j, nc!!
2# 21, [4.2]

hereG is the Lorentzian linewidth (half-width at half-max
um, HWHM5 =3DBpp/2, with DBpp being the peak-to-pea

rst-derivative linewidth), andK L is a constant.
More complicated lineshapes appropriate to polycrysta

amples are discussed by Misra (7), and in the references giv
herein.

V. A LISTING OF THE VARIOUS STEPS REQUIRED
IN SIMULATION OF POWDER SPECTRUM

IN INFINITESIMAL STEPS BY THE USE
OF LSF (HTMD) TECHNIQUE

The following steps are recommended to simulate a po
pectrum using the proposed homotopy method.

(i) The allowed resonance fields (uDMu 5 1) to be used a
nitial values are calculated atu 5 w 5 0° using the third-orde
of
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(M), (8, 9) and the resonance condition

hn 5 uE~M! 2 E~M 2 1!u. [5.1]

(ii) Using the resonance fields obtained foru 5 w 5 0 in
tep (i) as initial values, the resonance fields atu 5 p/ 2nu, w

0, are then calculated by the application of Eq. [3
bandoning the iteration procedure when the difference o
esonance field estimated in an iteration becomes less t
mall value, say 0.001 mT, from that estimated in the prev
teration. (Only w 5 0 is needed foru 5 0, since for this
rientation thex andy components ofB are identically zero.
he required eigenvalues and eigenvectors of the spin-H

onian matrix are computed by the use of the subrou
ACOBI, which diagonalizes real symmetric matrices an
articularly efficient when the off-diagonal elements in the
atrix are infinitesimally small as is naturally the case
omotopy. (Briefly, the diagonalization in the JACOBI al
ithm is accomplished by successive rotations to annihilat
ff-diagonal elements of the 23 2 submatrix constituted by th

argest off-diagonal element and the corresponding diag
lements of the SH matrix at any stage of successive rota
or details, see (10).) TheBr values obtained atu 5 p/ 2nu, w

0, are then used as initial values for calculating reson
elds at u 5 p/ 2nu and w 5 2p/nw. Next, the resonanc
elds are calculated using Eq. [3.1] foru 5 p/ 2nu, w 5
2p/nw)i , for i taking successively the values 2, 3, . . . ,nw 2
so as to span thew interval over 360° in equal steps of 2p/nw,
sing the set of resonant field values obtained in the prec
alculation as initial values. The resonance fields are
alculated foru 5 2(p/ 2nu), w 5 0, using those calculate
or u 5 p/ 2nu, w 5 0, as initial values. Thereafter, t
esonance fields are calculated in the same way as that fou 5
/ 2nu andw Þ 0 for u 5 2(p/ 2nu) and forw 5 (2p/nw)i for
taking on successively the values 2, 3, . . . ,nw 2 1. These
alculations are repeated by increasingu value in steps o
/ 2nu, and for each newu value, withw 5 0 theBr values a
alculated for the previousu value with w 5 0 are used a
nitial values to calculate newBr values. In total, the resonan
elds are calculated foru values in steps ofp/ 2nu from 0 to
/2, and for eachu value appropriatew values are chosen
teps of 2p/nw to cover the interval of 0 to 2p. For the
esonance fields so calculated at each orientation (u j , w j) of B,
he corresponding relative intensity of thei 9 7 i 0 transition,
(i , u, w, n c), is also calculated by the use of Eq. [2.2]. T
umerical technique used to accomplish this is describe
ppendix II. The resonance fields for the various transit
nd the corresponding intensities for various (u j , w j) combi-
ations are then stored, to be used later for simulatio
owder spectrum. (It is noted that a practical way to auto

cally ensure the inclusion of the weight factor of sinu is by
arying cosu uniformly over the interval 1 to 0 as described
ection III above).
(iii) The magnetic-field range over which the spectrum i



be simulated is divided into equally spaced points,Bk referred
t nc
fi of t
c d,
g l,
w s
a n i
t ut
c o t
l na
l e
fi
f
h g t
a
v mu
fi d
o n
s

ro-
w late
fi tiv
w th
t ap
g

I
t sse
f

se
e he
v

d b
a ,
c ttin
p
( rde
p e
z

[S(S 1 1) 2 M(M 1 1)] (8) of the variousM 7 M9
“ -
d ith
r the
p
e
r

a from
4 into
a pin-
H

I ,
D ld
s e
c
c r
s ible
e
E d in
R the
e

ex-
p the
H ape
f ing
t in-
f um
s ntal
s as
s in
F sim-
u gs. 1
a is
s of
p the
p that
a

ies
a omo-
t di-
a .,
e s are
f vari-
o m of

87SIMULATION OF POWDER SPECTRUM BY HOMOTOPY
o as channels (k); e.g., into 8000 channels. Each resona
eld is then changed, if necessary, to assume the value
losest channel, and the intensity of that resonance fiel
iven by Eq. [2.2], is assigned to be they value at that channe
ith the channel representing thex value. All resonance field
re thus taken into account. The lineshape distributio

hereafter, incorporated by distributing the intensity abo
hannel corresponding to a resonance line according t
ineshape function centered at that channel over a reaso
arge intervalDB, e.g., 0.5 T, on both the higher and the low
eld sides ofBr. (In general,DB 5 6DB1/ 2 for good precision
or Lorentzian lineshape, whereDB1/ 2 is the full-width at
alf-maximum, FWHM.) Channel intensities correspondin
ll the resonance fields calculated for the various (u j , w j)
alues are thus taken into account by extending the mini
eld of the range,Bmin, to Bmin 2 DB and the maximum fiel
f the range,Bmax, to Bmax 1 DB. The simulated absorptio
pectrum,S(B, n c), is calculated in this manner.
(iv) Usually, it is the first derivative of the absorbed mic
ave power that is experimentally measured. The simu
rst-derivative spectrum is calculated by taking the deriva
ith respect toB of S(B, n c), as given by Eq. [4.1], along wi

hat of the lineshape. Specifically, for the Lorentzian linesh
iven Eq. [4.2], one has for the first derivative

­FL~Br~i , u j, w j, nc!, Bk!/­Bk

5 22KLG@G 2 1 ~Bk 2 Bri!
2# 22~Bk 2 Bri!. [5.2]

n Eq. (5.2), and hereafter,Bri stands forBr(i ,u j , w j , n c). Thus,
he simulated first-derivative absorption spectrum is expre
rom Eq. [4.1], as

­S~B, nc!/­Bk 5 C O
i ,u j,w j,k

P~i , u j, w j!,

­FL~v i, Br~i , u j, w j!, Bk!/­Bksin u j [5.3]

5 N O
i ,k

u^F i 9uB1xSx 1 B1ySy 1 B1zSzuF i 0&u 2

3 ~Bk 2 Bri!@G
2 1 ~Bk 2 Bri!

2# 22. [5.4]

In Eq. [5.4], the constant, N, may be appropriately cho
.g., the calculated value with the largest magnitude of ty
alue of all the channels was here set equal to 1.

VI. ILLUSTRATIVE EXAMPLE

The proposed homotopy technique will now be illustrate
pplication to the case of Mn(g-picoline)4I 2 powder sample
haracterized by a rather large value of the zero-field spli
arameter,D, as measured by Lynchet al. (8) at 249.9 GHz
far infrared), who simulated the spectrum using third-o
erturbation expressions for the energy (8, 9) and the sam
ero-order relative intensity (u^M, muS1 1 S2uM9, m&u 2) 5
e
he
as

s,
a
he
bly
r

o

m

d
e

e,

d,

n,

y

g

r

allowed” fine-structure (M9 5 M 2 1) transitions indepen
ent of the orientation of the external magnetic field w
espect to the axis of the various crystallites constituting
owder. (HereM is the magnetic quantum number andS is the
lectron spin withS1 5 Sx 1 iSy and S2 5 Sx 2 iSy the
aising and lowering operators, respectively.

The spectrum observed by Lynchet al. (8) did not exhibit
ny hyperfine structure, and the magnetic field was swept
.4–9.4 T. Thus, only the fine structure will be taken
ccount here in the simulated spectrum. The following s
amiltonian was used (8):

H 5 gmBB~Szcosu 1 Sxsin u cosw 1 Sysin u sin w!

1 D@Sz
2 2 S~S1 1!/3# 1 E~Sx

2 2 Sy
2!. [6.1]

n Eq. [6.1], g 5 2.000 for Mn21; mB is the Bohr magneton
/gmB 5 1.0728 T andE/gmB 5 10 mT are the zero-fie
plitting parameters (8), and the (x, y, z) axes define th
oordinate system used. (In spherical coordinate system,z 5 r
osu, x 5 r sin u cosw, y 5 r sin u sin w.) The fourth-orde
pin-operator terms in the spin Hamiltonian, having neglig
ffect at 249.9 GHz, were not taken into account. (TheD and
values chosen here are slightly different from those use
ef. (8), as the ones chosen here provide a better fit to
xperimental spectrum.)
The simulated first-derivative powder EPR spectrum as

ressed by Eq. [5.3], using a Lorentzian lineshape with
WHM (DW) value of 70 mT characterized by the linesh

unction given by Eq. [4.3], as well as that calculated us
hird-order perturbation approximation at 249.9 GHz (far
rared) (10), is exhibited in Fig. 1. Figure 2 shows the spectr
imulated by the HTMD method along with the experime
pectrum (8) in the 4.4–9.0 T range. The powder spectrum
imulated by HTMD method at 95 GHz (W band) is given
ig. 3, which also includes for comparison the spectrum
lated using third-order perturbation expressions. From Fi
nd 3, it is clear that simulation with the HTMD method
ignificantly different from that accomplished by the use
erturbation approximation, especially at 95 GHz where
erturbation approximation is much less valid compared to
t 249.9 GHz because of largeD.

VII. COMPUTATIONAL TIME: BRUTE-FORCE MATRIX
DIAGONALIZATION VERSUS HOMOTOPY

MATRIX DIAGONALIZATION

It is profitable to examine the computer-time econom
chieved when powder spectra are simulated using the h

opy technique. In a BFMD procedure, the SH matrix is
gonalized at each orientation ofB at small intervals, e.g
very 5 mT, over the magnetic-field range and eigenpair

ound by comparing the energy differences between the
us energy levels to be closest to the energy of a quantu
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icrowave radiation. The process must be further refined
maller magnetic-field intervals for the various transition
etermine the initial resonance fields,Br. Thus, for the examp
onsidered in this paper covering theB-field interval from 4 to

FIG. 1. Powder spectra for Mn21 in Mn(g-picoline)4I 2 at 249.9 GHz (
pin-Hamiltonian described by Eq. [6.1] as simulated both by the use o

FIG. 2. Powder spectrum for Mn21 in Mn(g-picoline)4I 2 at 249.9 GHz
pin-Hamiltonian described by Eq. [6.1] as simulated by the use of the H
. (The magnetic field could not exceed 9.4 T experimentally.) It is noted
elong to another unknown impurity that is present rather than to the M21 io
er
o
4 T, if diagonalizations were performed in 5-mT steps t
000 diagonalizations of the SH matrix are required. T
ight also involve another factor of 50 for the five allow

ransitions if smaller steps are also included, since each

infrared) withg 5 2.000, D/gmB 5 1.0728T, E/gmB 5 10 mT with the
e HTMD method and by third-order perturbation expressions.

infrared) withg 5 2.000,D/gmB 5 1.0728 T,E/gmB 5 10 mT with the
D method, plotted along with the one experimentally measured in the ra–9.4
at the experimental peaks that do not correspond to those in the simulaectrum
8).
far
f th
(far
TM
th
nn (
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ition requires 10 diagonalizations. Consequently 105 more
iagonalizations are required for each orientation ofB to
stimate the initial values ofBr to be refined further by the u
f Eq. [3.1] in the BFMD approach than those required in
TMD technique, since in the latter the initialBr values

equire no computation as they have already been calcu
or the previous infinitesimally close orientation ofB. Conse
uently, it is estimated that the BFMD method requires
rders of magnitude more diagonalizations, or a corresp

ngly longer computational time than that required in
TMD method. No attempt has here been made to carry
FMD simulation because of the exorbitant estimated com

ational time involved. In the example presented in this p
Fig. 1) it took 4 h 9 min1.77 s on the powerful IBM RS/600
nix computer at the Cornell University Theory Center
imulate the spectrum by the HTMD method when a g
hich consisted of 300u values and 90f values for eachu
alue, was used. (It should be mentioned that the SH mat
e diagonalized using the JACOBI subroutine was of 123 12
imension, since this subroutine diagonalizes only a real

rix. The imaginary part is thus handled using the proce
escribed in (10), requiring diagonalization of a matrix

wice the dimension of that of the SH matrix.)
It is noted that the matrix-diagonalization procedure is

able of handling any SH matrix, even if the off-diagonal te
re sufficiently large to invalidate the use of perturba

echnique. As well, it is applicable to any values of the elec
nd nuclear spins. Further, although it is desirable to us
TMD technique to simulate a polycrystalline spectrum
rously, it should not be forgotten that the perturbation
roach is useful when it is valid and when one is not intere

FIG. 3. Same details as in the legend to Fig. 1, except that the frequen
e

ed

e
d-

t a
u-
er

,

to

a-
re

-
s
n
n
he
-
-
d

n simulating a polycrystalline spectrum quantitatively. In
ase, a qualitative spectrum can be simulated quickly s
erturbation expressions do not require time-consuming m
iagonalization, and the calculation of a resonant field u

he resonance condition, Eq. [5.1], and eigenvalues ca
eadily accomplished by Newton–Raphson method as
cribed in Numerical Recipes (10). Using this approach th
bove example requires only 7 s of computational time t
imulate the spectrum on the IBM RS/6000 computer at
ell University Theory Center.

VIII. DISCUSSION AND CONCLUDING REMARKS

The procedure of simulating a powder spectrum as out
n this article using the technique of homotopy and nume
iagonalization of the spin-Hamiltonian matrix is rigoro
ince eigenvalues and eigenvectors of the SH matrix are
ather than perturbation expressions. This is particularly u
hen the zero-field splitting parameter,D, is relatively large

n which case for smaller microwave frequencies, e.g., 95-
W band) perturbation approximation is not justified in
xample considered here:D/hn ; 0.1 at 249.9 GHz, whil
/hn ; 0.25 at 95GHz. The proposed HTMD procedu
sing JACOBI diagonalization algorithm, is particularly e
ient in computer time required when the off-diagonal term
H matrix at successive orientations ofB are naturally infini

esimally small in homotopy. The simple (u j , w j) grid over the
nit sphere as suggested here may be replaced by mor
ient partitioning techniques, e.g., the SOPHE grid desc
y Wang and Hanson (4, 5) or the Igloo method (6).
The procedure illustrated in this paper can be easily

is 95 GHz (W band). (There is no experimental spectrum available for co
cy
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esonance, solid-state nuclear magnetic resonance, n
uadrupole resonance, and electron spin echo envelope
lation, as well as to include hyperfine structure, if there is
Finally, it is noted that the (u j , w j) grid as chosen here

uite appropriate for the Mn21 ion, since there are no “loo
ng,” or “lobe,” transitions (2). However, when these exist, e.
n the case of the Fe31 ion, certain strategies are required,

relevant discussion is provided here in Appendix II
ddition, a superior partitioning scheme (4–6) may be ex
loited to advantage, among other things, to this end.
It is worthwhile to emphasize that if one can calculate

PR line positions’ angular variation for an external magn
eld orientations over the unit sphere by homotopy for a si
rystal, as, for example, in (2), then the simulation of powd
pectrum is readily accomplished by following the proced
escribed in this paper. Thus, it is clear that the cases invo

ooping or lobe transitions and allowed hyperfine transit
Dm 5 0, m being the nuclear magnetic quantum number)
learly be handled by this technique, since single-crysta
ular variation of resonant line positions for these cases
lready considered in (2). The extension of this technique

he cases involving both forbidden fine (DM 5 62, 63,
4, . . . ) and forbidden hyperfine (Dm 5 61, 62,
3, . . . ), as well as superhyperfine, transitions can als
ade by first calculating the EPR line positions’ angular v
tion for a single crystal. Consequently, no examples of t
ases are given in this paper, since its objective is to outlin
ethodology and not to provide an encyclopedic collectio
xamples.
The simulation procedure presented here, among othe

minently amenable to be exploited for estimation of s
amiltonian parameters from a powder spectrum by the l
quares fitting procedure and numerical diagonalization o
pin-Hamiltonian matrix similar to that proposed in (11) in
ontext with single-crystal EPR spectra, even though the
er spectrum possesses further complications over and

hose of a single-crystal EPR spectrum. This LSF techn
ill, thus, be of immense help to this end, especially in th
ases where single-crystal samples cannot be prepared
ransition-metal ions doped metalloproteins. Efforts are
ently in progress by the author to accomplish this.

APPENDIX I

Evaluation of the Right-hand Side of Eq. [3.1]

From the definition ofS, as given by Eq. [3.2], one obtai

­S

­B
5 2~uEi 9 2 Ei 0u 2 hnc!S­Ei 9

­B
2

­Ei 0

­B D sign~Ei 9 2 Ei 0!,

[I.1]
ear
od-
y.

e
c
le

e
g

s
n
n-
re

e
i-
se
he
f

, is
-
t-
e

-
ve
e
e
.g.,
r-

sign~Ei 9 2 Ei 0! 5
~Ei 9 2 Ei 0!

uEi 9 2 Ei 0u
.

n Eq. [I.1], the derivative of an eigenvalueEi 9 or Ei 0 can be
valuated by the use of Feyman’s theorem (12), e.g.,

­Ei 9

­B
5 KF i 9 U ­H

­B
UF i 9L

5 mB^F i 9ugzzcosuSz 1 gxxsin u coswSx

1 gyysin u sin wSyuF i 0&, [I.2]

here mB is the Bohr magneton;gaa(a 5 x, y, z) are the
omponents of theg̃ tensor. (It has been assumed that thg̃
ensor is diagonal in the coordinate axes chosen here
riting Eq. [I.2], the fact that only the Zeeman term,

HZ 5 mBS ? g̃ ? B, [I.3]

epends on the external field has been taken into accoun
z 5 B cosu, Bx 5 B sin u cosw, By 5 B sin u sin w. From
q. [I.2], one obtains, ignoring the second derivatives bec
f the infinitesimally close orientation ofB from the previou
rientation,

­ 2S

­B2 5 2 S­Ei 9

­B
2

­Ei 0

­B D 2

. [I.4]

hus, to be used in Eq. [3.1],

2S ­ 2S

­B2D 21 S ­S

­BD 5 2~uEi 9 2 Ei 0u 2 hnc!

sign~Ei 9 2 Ei 0!/S­Ei 9

­B
2

­Ei 0

­B D . @I .5#

APPENDIX II

Calculation of Intensities of Lines

The intensityP(i , u, w), of a transition,i , between th
nergy levelsi 9 and i 0 is given by Eq. [2.2]. Each element
n eigenvector can be expressed in terms of its real (Re

maginary (Im) parts:

uF i 9&k 5 ReuF i 9&k 1 ImuF i 9&k. [II.1]

term on the right-hand side of Eq. [2.2] can be expressed
xample, as



u^F i 9uB1SxuF i 0&u 2 5 B1
2@$Rê F i 9uSxuF i 0&%
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1 $Im^F i 9uSxuF i 0&%
2#

5 B1
2@$ReTr@Sx~uF i 0& # ^F i 9u!#% 2

1 $Im Tr@Sx~uF i 0& # ^F i 9u!#% 2#.

[II.2]

n Eq. [II.2], Tr is the trace of a matrix anduF i 0& V ^F i 9u
epresents the outer product of the two eigenvectorsuF i 9& and
F i 0& with the matrix elements

~uF i 0& # ^F i 9u! jk 5 uF i 0& juF i 9&*k. [II.3]

urther, taking into account the fact thatSx is a real symmetri
atrix such that the only nonzero elements in the repres

ion in which the matrix forSz is diagonal (so that possib
alues forj are over the magnetic quantum numberM 5 S,
2 1, . . . , 2(S 2 1), 2S) are

Re~Sx! j , j11 5 Re~Sx! j11, j, and Im~Sx! j ,k 5 0, [II.4]

nd that

Re~uF i 0& # ^F i 9u! jk 5 ReuF i 0& jReuF i 9&k

1 ImuF i 0& jImuF i 9&k

Im~uF i 0& # ^F i 9u! jk 5 2ReuF i 0& jImuF i 9&k

1 ImuF i 0& jReuF i 9&k. [II.5]

ne obtains

Re Tr@Sx~uF i 0& # ^F i 9u!# 5 O
j

~Sx! j , j11

3 $Re~uF i 0& # ^F i 9u! j11, j 1 Re~uF i 0& # ^F i 9u! j , j11%

[II.6]

Im Tr@Sx~uF i 0& # ^F i 9u!# 5 O
j

~Sx! j , j11

3 $Im~uF i 0& # ^F i 9u! j11, j 1 Im~uF i 0& # ^F i 9u! j , j11%.

[II.7]

n Eqs. [II.6] and [II.7] thej sum is over theM values2S,
(S 2 1), . . . , (S 2 1). Thus, the right-hand side of E

II.2] can be calculated by the use of Eqs. [II.6] and [II
imilarly, for theB1Sy andB1Sz terms on the right-hand sid
f Eq. [2.2], one has an equation similar to Eq. [II.2] withSx

eplaced bySy andSz, respectively.
To evaluate the corresponding expression inSy, one notes tha

y contains only imaginary elements with the nonzero elem

Im~Sy! j , j11 5 2Im~Sy! j11, j
ta-

s

Re~Sy! jk 5 0. [II.8]

ne then obtains

Re Tr@Sy~uF i 0& # ^F i 9u!#

5 2O
j

Im~Sy! j , j11Im~uF i 0& # ^F i 9u! j11, j [II.9]

Im Tr@Sy~uF i 0& # ^F i 9u!#

5 O
j

Im~Sy! j , j11Re~uF i 0& # ^F i 9u! j11, j. [II.10]

n Eqs. [II.9] and [II.10] the required imaginary and real pa
f the outer products on the right-hand sides are gives b

II.5]. As for the corresponding expression inSz, one notes tha
z has only diagonal elements nonzero, which are real, t

Im~Sz! jk 5 0

Re~Sz! jk 5 ~Sz! jkd jk, [II.11]

hered jk is the Kronecker-d symbol, such thatd ij 5 0 for i Þ
, d ij 5 1 for i 5 j . Finally,

Re Tr@Sz~uF i 0& # ^F i 9u!# 5 O
j

~Sz! j , j$ReuF i 0& jReuF i 9& j

1 ImuF i 0& jImuF i 9& j% [II.12]

Im Tr@Sz~uF i 0& # ^F i 9u!# 5 O
j

~Sz! j , j$2ReuF i 0& jImuF i 9& j

1 ImuF i 0& jReuF i 9&%. [II.13]

hen the orientation of theB1 field responsible for inducin
ransitions is parallel to any one of thex, y, z directions, one
an use the appropriate expression similar to Eq. [II.2
alculate the relative intensity of thei 9 7 i 0 transition. For an
rbitrary orientation of theB1 field, one can sum the real a

maginary parts of the three terms together. The requ
quare of the absolute value in Eq. [2.2] is then obtained

u^F i 9uB1xSx 1 B1ySy 1 B1zSzuF i 0&u 2

5 B1
2@u O

a5x,y,z

aaRe$Sa~uF i 0& # ^F i 9u!%u 2

1 u O
a5x,y,z

aaIm$Sa~uF i 0& # ^F i 9u!%u 2#.

[II.14]

n Eq. [II.14], ax 5 sin u cosw, ay 5 sin u sin w, andaz 5
osu.
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Strategies to Handle Crossing and Looping Transitions

To this end, a knowledge of angular variation ofBr in a
ingle crystal as outlined in (2) is helpful. The details for th
wo cases are as follows.

(i) Crossing transitions. When resonant fields for tw
ransitions cross each other in such a way that the cro
akes place at one of the (u j , w j) values chosen for computati
f the resonant field (case of degeneracy), only one initial v
ecomes available for computation of the two resonant
alues at the next value (u j11, w j11). This can be remedied b
educing the interval between (u j , w j) and (u j21, w j21), so tha
egeneracy at (u j , w j) does not occur. Alternatively, one m
se the perturbation expressions, or brute-force metho
iagonalizing the SH matrix forB values over an extend
ange at small intervals to find the resonant field value
u j11, w j11).

(ii) Looping transitions. There are some transitions wh
o not continue over all (u j , w j) values. Thus, they constitu
losed curves in the (u j , w j) space on the unit sphere. Equ
lently, there exist two resonant field values for the s

ransitions for some (u j , w j) values, while there exists n
esonant field value for a transition for certain (u j , w j) values
he existence of these looping transitions can be checke
alculating resonant field values for a certain orientationu0,
0) for which they exist. The resonant field values so obta
an then be used to calculate their angular variation by
reasing and increasing (u j , w j) in small steps form (u0, w0)
ntil the two converge to the same value, beyond which
alculated values by the use of Eq. [3.1] become negative2).
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are degenerate in n pairs; each pair has the eigenvalues of the
matrix A 1 iB, and the eigenvectors (in columns with 2n elements)
corresponding to any pair are such that the sets of upper and lower
n elements can be chosen to be, respectively, the real and
imaginary parts of the corresponding eigenvalue of the matrix
A 1 iB, such that (A 1 iB)(u 1 iv) 5 l(u 1 i v) leads to

SA 2B
B A DSu

vD 5 lSu
vD and SA 2B

B A DS2v
u D 5 lS2v

u D].

1. S. K. Misra, J. Magn. Reson. 23, 403 (1976).
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